(t)=16t^2+79t+5

Simple and best practice solution for (t)=16t^2+79t+5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (t)=16t^2+79t+5 equation:



(t)=16t^2+79t+5
We move all terms to the left:
(t)-(16t^2+79t+5)=0
We get rid of parentheses
-16t^2+t-79t-5=0
We add all the numbers together, and all the variables
-16t^2-78t-5=0
a = -16; b = -78; c = -5;
Δ = b2-4ac
Δ = -782-4·(-16)·(-5)
Δ = 5764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5764}=\sqrt{4*1441}=\sqrt{4}*\sqrt{1441}=2\sqrt{1441}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-78)-2\sqrt{1441}}{2*-16}=\frac{78-2\sqrt{1441}}{-32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-78)+2\sqrt{1441}}{2*-16}=\frac{78+2\sqrt{1441}}{-32} $

See similar equations:

| -2x+25=1/2(10+4x) | | -96=6(-2m-4) | | -7(10x-1)=7+7x | | 9x^2-12x-36=0. | | 3(x+4)−4x=−2(x+1)+4 | | 3x-14=-8x+30 | | 2-5q=8-5q-6 | | -20x-8+2x+4=50 | | −1=2x+7/3 | | 4x-16=108 | | -9+a=23 | | -2(-6x-1)=38 | | 6x-9=4x-3+x | | 8x-26=1 | | m+13=10 | | -48+3x=-12(-3x-7) | | -9-6p=-6p-9 | | 3x+6+9=-18 | | 155=5(3-4x) | | 6n-(n+20)=110 | | -3(2x+5)=6 | | 4(x+7)-8=-2(x-6) | | 9x-9=5×+7 | | 1/2(x-2)=5x+8 | | 5(2x-3)-4=45 | | 55x+1000=60x+900 | | 12+x-6=3x+7 | | 2x+5x+3=52 | | 19x+121=x+139 | | -3+4(x-1)=x+29 | | 6b+11=b^2 | | q/6+1=15 |

Equations solver categories